


Filter Bag Pressure Drop - ΔPB

Step 2 Correct for bag size from the table below if the size is different than #2 size.

Bag	Dia. X	Multiply
Size	Length	Ву
2	7.06 x 32	1.00
9	5.5 x 32	1.50
1	7.06 x 16	2.25
8	5.5 x 21	2.25
7	5.5. x 15	3.00
4	4.15 x 14	4.50
3	4.15 x 8	9.00

Step 3 If the viscosity of the liquid is greater than 1 cps (water @ 77°F). Multiply the result from step 2 by the proper correction factor from the chart below.

Viscosity	Correction
(cps)	Factor
50	4.5
100	8.3
200	16.6
400	27.7
800	50.0
1000	56.2
1500	77.2
2000	113.6
4000	161.0
6000	250.0
8000	325.0
10000	430.0

The value obtained in step 3, ΔPB is the clean pressure drop caused by the filter bag.

SUMMARY

System Pressure Drop = $\Delta PS = \Delta PH + \Delta PB$

For new applications the ΔPS should be 2.0 psi or less. For high contaminant loading applications, this value should be as low as possible. The lower this value is, the more contaminant a bag will hold. For applications with nominal contaminants, this value can go to 3.0 psi or more. Consult factory for specific recommendations when the clean ΔPS exceeds 2.0 psi.