Filter Bag Pressure Drop - ΔPB Step 2 Correct for bag size from the table below if the size is different than #2 size. | Bag | Dia. X | Multiply | |------|-----------|----------| | Size | Length | Ву | | 2 | 7.06 x 32 | 1.00 | | 9 | 5.5 x 32 | 1.50 | | 1 | 7.06 x 16 | 2.25 | | 8 | 5.5 x 21 | 2.25 | | 7 | 5.5. x 15 | 3.00 | | 4 | 4.15 x 14 | 4.50 | | 3 | 4.15 x 8 | 9.00 | Step 3 If the viscosity of the liquid is greater than 1 cps (water @ 77°F). Multiply the result from step 2 by the proper correction factor from the chart below. | Viscosity | Correction | |-----------|------------| | (cps) | Factor | | 50 | 4.5 | | 100 | 8.3 | | 200 | 16.6 | | 400 | 27.7 | | 800 | 50.0 | | 1000 | 56.2 | | 1500 | 77.2 | | 2000 | 113.6 | | 4000 | 161.0 | | 6000 | 250.0 | | 8000 | 325.0 | | 10000 | 430.0 | The value obtained in step 3, ΔPB is the clean pressure drop caused by the filter bag. ## SUMMARY System Pressure Drop = $\Delta PS = \Delta PH + \Delta PB$ For new applications the ΔPS should be 2.0 psi or less. For high contaminant loading applications, this value should be as low as possible. The lower this value is, the more contaminant a bag will hold. For applications with nominal contaminants, this value can go to 3.0 psi or more. Consult factory for specific recommendations when the clean ΔPS exceeds 2.0 psi.